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Abstract—As computing capabilities have increased, the cou-
pling of computational models has become an increasingly viable
and therefore important way of improving the physical fidelity
of simulations. Applications currently using some form of multi-
code or multi-component coupling include climate modeling,
rocket simulations, and chemistry. In recent years, the plasma
physics community has also begun to pursue integrated multi-
physics simulations for space weather and fusion energy appli-
cations. Such model coupling generally exposes new issues in
the physical, mathematical, and computational aspects of the
problem. This paper focuses on the computational aspects of
one such effort, detailing the design, and implementation of the
Integrated Plasma Simulator (IPS) for the Center for Simulation
of Wave Interactions with Magnetohydrodynamics (SWIM). The
IPS framework focuses on maximizing flexibility for the creators
of loosely-coupled component-based simulations, and provides
services for execution coordination, resource management, data
management, and inter-component communication. It also serves
as a proving ground for a concurrent “multi-tasking” execution
model to improve resource utilization, and application-level fault
tolerance. We also briefly describe how the IPS has been applied
to several problems of interest to the fusion community.

I. INTRODUCTION

The Center for Simulation of Wave Interactions with Mag-
netohydrodynamics (SWIM) is devoted to improving the un-
derstanding of the interactions of radio frequency (RF) wave
and the extended magnetohydrodynamic (MHD) phenomena
of burning plasma. It is one of three projects supported by the
U.S. Dept. of Energy’s Scientific Discovery through Advanced
Computing (SciDAC) program to explore different multi-
physics phenomena as conceptual and scientific prototypes
for a planned Fusion Simulation Project [1], [2], target-
ing integrated “whole-device” modeling of the International
Thermo-nuclear Experimental Reactor (ITER) [3] and future
experimental tokamaks.

The SWIM project [4] includes two physics research ele-
ments and one supporting computational research element [5].
The “fast MHD” physics campaign addresses long timescale
discharge evolution in the presence of sporadic fast MHD
events. This effort involves the use of RF and other driving
sources to study and control fast time-scale MHD phenomena
to achieve long-time MHD stable discharges and control

sawtooth events. The “slow MHD” campaign models the direct
interaction of RF and extended MHD for slowly growing
modes, with the goal of controlling neoclassical tearing modes.
The computational research element involves the development
of a framework to enable the coupled multi-physics simula-
tions required by these two physics campaigns in an efficient
but flexible fashion. The resulting Integrated Plasma Simulator
(IPS) is the evolving product of this computational research
effort.

This paper describes the SWIM project’s requirements for
the IPS (Sec. II), the design of the framework (Sec. III) and its
implementation (Sec. IV). We briefly discuss how the IPS is
being used to model ITER plasma discharges (Sec. V) before
concluding the paper, including a discussion of future plans
for the IPS (Sec. VI).

II. REQUIREMENTS

The design of the IPS framework has been strongly driven
by the scientific needs of the SWIM project, but with the
idea that it should also be able to serve the needs of a
broader community. At the same time, the design has also been
constrained in certain ways by characteristics of the fusion
modeling community.

The essential scientific requirement is that the IPS be able
to flexibly support integrated modeling based on a fairly broad
range of physical phenomena, with the possibility of multiple
interchangeable codes for each type of physics. Consequently,
the framework must be able to flexibly accommodate the
experimentation that may be required to arrive at effective
solutions. The flexibility requirement is further reinforced by
the desire to accommodate multiple implementations of each
type of physics, to facilitate comparisons of the effect on the
coupled simulation of different modeling approaches, ranging
from high-fidelity to reduced models. It should be possible for
SWIM scientists to rapidly explore different coupling schemes
and different combinations of components without the need to
modify the framework itself.

The complexity of the underlying coupled physics, and
the need to focus on understanding the interactions between
different physical phenomena translate into the need to adopt



a simple coupling protocol. Such a protocol should be easy to
implement (and more importantly easy to debug) to quickly
isolate protocol errors as they manifest themselves in simula-
tion outputs.

The basic physics of interest to SWIM has, to a signif-
icant extent, already been expressed in the form of various
standalone physics codes, which has both advantages and
disadvantages from the standpoint of developing an integrated
modeling capability. While it is possible to avoid the time and
expense of developing the functionality from scratch, working
with large bodies of existing code can also be constraining. In
the case of SWIM, many of the existing codes of interest have
extensive histories and user bases apart from SWIM, and are
undergoing continual development. Most of the code “owners”
(who are, in most cases, also members of the SWIM project
team) were reluctant to accept major changes to their code
solely to support the needs of the SWIM project, and the
SWIM project had a very strong desire to avoid “forking”
physics codes into a SWIM version and a general standalone
version because it would make it much harder for SWIM
to leverage other improvements to the codes. Recognizing,
at least in the initial phases of the project, that the coupling
between physics components could be relatively loose (modest
in both frequency and volume of data exchanged), we deter-
mined that it would be sufficient to work, in so far as possible,
with the physics applications as is, even though this implies a
high level of diversity in parallel scalability, code structure,
build systems, external dependencies, I/O subsystems, and
other factors. Another ramification of the desire to work with
existing code to the greatest extent possible is that it would be
incumbent on the framework to provide a common set of data
management functionality to facilitate a diverse set of codes
successfully exchanging data.

However we also anticipated that the physics and mathe-
matics of the coupled simulations would eventually require
tighter couplings and unavoidable intrusions into the stan-
dalone physics codes. While we explicitly deferred addressing
these requirements in the framework until the need arose
on the physics side, we wanted a provide clear path from
the initial framework design and implementation to a future
higher-performance tightly-coupled version.

The final source of requirements is the target computer
platforms. In our case, the primary targets are Linux clusters
and high-end facilities, to allow highly-scalable SWIM codes
to run at scale. These are generally centralized resources,
managed by a batch queue. Current high-end systems, such as
the Cray XT and IBM Blue Gene series, tend to have limited
operating system capabilities on the compute nodes (e.g. no
dynamic linking, standard socket communications, or other
features). The IPS and applications built with it must be able
to run in these environments.

III. APPROACH AND FRAMEWORK DESIGN

The design requirements outlined in section II guided our
decision to adopt a component-based design for the IPS
environment. Component Based Software Engineering (CBSE)

has long been recognized as an effective approach to manage
the growing size and complexity of modern software.

Other approaches, such as workflow tools (for example,
Kepler [6], [7]), might have served as well for the immediate
requirements of a loose, file-based coupling, but do not provide
a path that we felt would satisfy the eventual need for
higher performance coupling. Efforts such as the Common
Component Architecture (CCA) [8], Cactus [9], Salome [10],
among others have demonstrated the viability of the CBSE
approach in large scale scientific computing, and would allow
the same concepts and core software architecture to serve both
immediate and longer-term needs.

At the core of the CBSE approach lies the view of the
software component as a unit of software development and
composition that has well defined boundaries. Components
interact with each other through well-defined interfaces, and
different components which conform to a common interface
can, in principle, be interchanged easily. A component frame-
work provides the environment in which components are
composed together into an application and executed, and a
set of services on which components can depend.

For SWIM, as in many coupled simulation projects, the dif-
ferent physics models map quite naturally onto the concept of
components. The desire to support multiple implementations
in each type of physics maps to the idea of interchangeable
components.

The flexibility of a component-based software system is
largely a matter of the design and implementation of the
software architecture. In general, a light weight framework will
delegate more functionality to the paticipating components,
rather than the framework itself, allowing for greater flexibility
in the simulation environment. We have adopted the light
weight framework approach, while providing a robust and
easy to use environment for fusion simulation. Thus, the IPS
is designed to provide a modest set of services to manage
configuration, resource allocation, data, and task execution.
We use a “driver component” design pattern, which is quite
common in CBSE, to put the control of the simulation’s
workflow into a user-level component rather than building it
into the framework.

To facilitate data management, we introduce the idea of a
“plasma state” as the repository for the collective information
that define the state of the simulation at any moment. (Though
in practice, as discussed below, our Plasma State holds only
the data that needs to be shared with other components in the
coupled simulation.)

To deal with the requirement to work with existing physics
codes without modification, we have adopted the approach of
wrapping the executables of the standalone physics code with
a (usually thin) layer of code to serve as an adapter between it
and the component environment desired by the SWIM project.

The overall design of the IPS framework and components,
based on the approach just described, is shown schematically
in Figure 1. The primary elements of the design are:

• IPS Framework The framework enables the runtime in-
stantiation and configuration of constituent code compo-



Fig. 1. IPS Simulation Framework

nents. Furthermore, the framework provides services that
enable the coordinated execution of physics components
in a coherent simulation.

• Framework Services Components use services offered
by the framework to access application and component
configuration, manage inter-component method invoca-
tion, control the execution of the underlying physics
application, initiate data management and transfer opera-
tions, and perform event-based asynchronous communi-
cation with other parts of the simulation.

• Plasma State The plasma state is made up of one or
more files that act as a repository of shared simulation
data accessed by two or more constituent physics codes.
The definition of plasma state quantities and rules for
their ownership, instantiation, and inter-dependencies are
agreed upon among all constituent codes.

• Physics Component A physics component is a wrapped
version of the physics application that implements the
IPS component API. The physics component adapts ap-
plication data to/from data stored in the plasma state.
Additionally, the component transforms a method invo-
cation into one or more invocations of the underlying
physics application, performing any needed pre and post
processing. A special driver component is used to coordi-
nate the execution of other physics components through
the services of the IPS framework.

• Physics Application The application is an existing code
that is integrated into the IPS simulation environment.
Codes need to have well defined input files, output files,
and control mechanisms (either command line or special
input files) that control its operation. Furthermore, each
code defines the subset of plasma state quantities which
it owns (ownership indicates primary responsibility for
instantiation and update).

In the original implementation of the IPS, computational
tasks (component method invocations) could utilize parallel

physics applications underneath, these tasks could only be
executed sequentially. Because the applications of interest vary
widely in parallel scalability and computational intensity, we
introduced a “multiple-component multiple-data” (MCMD)
execution model which allows multiple parallel tasks to be
executed concurrently within the framework. Although this
change did not alter the general design as shown in Figure 1,
it did require the introduction of new services and impacted
other aspects of the IPS implementation. The implementation
of the current MCMD version of the IPS is described below.

IV. IPS IMPLEMENTATION

In this section, we discuss the capabilities, responsibilities,
and salient implementation details for the major elements of
the IPS framework. Figure 2 illustrates the architecture of the
IPS and will serve as a useful guide throughout this section.

A. Framework

The IPS framework provides the environment in which
components are assembled and executed as a coherent simula-
tion. The framework makes certain services available to com-
ponents to invoke as appropriate during the various stages of
execution. Such services can be broadly categorized into com-
ponent instantiation and configuration management, resource
management, task and remote method execution coordination,
and events management.

To meet the flexibility and adaptability requirements out-
lined in section II, we opted to implement the framework
and component wrappers in a scripting language, Python, that
meets those requirements. In addition, Python is increasingly
being used in large scale scientific applications, making avail-
able a rich ecosystem of utility modules that can be used to
simplify the coding of IPS component wrappers.

The IPS architecture relies on the concept of ports, an
abstraction that represents the type of physics involved in
an IPS simulation. Each port is implemented by a particular
component (wrapped physics executable). By convention, the
primary interface exposed by all components consists of
three methods, init(), step(), and finalize(). This
interface is similar to the one adopted by the Earth System
Modeling Framework (ESMF) [11], though the framework
itself does not actually limit the component interface, and
several IPS components have extended interfaces to satisfy
specific needs.

B. Framework Services

Framework services are provided by several managers,
which collectively constitute the bulk of the IPS framework.
The remaining code in the framework mainly handles simula-
tion start-up and shutdown, and routing of service requests to
appropriate managers. What follows is a brief description of
the different managers and the services they provide.

The configuration manager is responsible for two major
functions within the framework. It maintains a database of
simulation configuration parameters provided in one or more



SWIM Web Portal 

FTB
 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

B 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

Framework 

Plasma State 

Resource 
Manager 

Task 
Manager 

Data 
Manager 

Config. 
Manager 

Event 
Manager 

Message Handler 

Comp B 
S

ervices 
P

roxy 
Comp A 

S
ervices 

P
roxy 

FTB
 B

ridge 

S
ervices 

P
roxy Comp C 

S
ervices 

P
roxy 

Driver 

S
ervices 

P
roxy 

Portal 
Bridge 

S
ervices 

P
roxy 

Launch simulation 

Monitor 
progress 

Head Node 

Compute 
Nodes 

Physics 

Special 
purpose 

Method 
Invocation 

Queue 

Framework In 
Queue 

Service 
Response 

Queue 

Components 

Glue code 
between 
components 
and managers 

Message 
handling code 

Managers 
Queues 

Each component 
has the following 
two queues to 
receive messages 
from the 
framework: 

Method 
invocation queue 
(dotted line) 

Service response 
queue (dashed 
line) 

Plus, a shared 
Framework In 
Queue for sending 
messages to the 
framework. 

Fig. 2. An illustration of the relationships between the framework, components, services, and tasks in the Integrated Plasma Simulator. The queues used for
communication between the framework services and the components, and the process layout on a typical high-end computer system are highlighted.

simulation configuration files. These files are parsed on frame-
work start-up and data therein can be queried by components
during execution. Among the data entries are: simulation work
directories, simulation identification tags, specification of the
simulation time loop, and location of simulation monitoring
web portal. The structure of the simulation configuration file
is described in more detail in [12].

The configuration manager is also responsible for instan-
tiating simulation components, as Python wrapper objects,
based on entries in the configuration files. Such components
are indirectly accessed (typically by the driver component)
using the ports they implement. The mappings of ports to
components are maintained by the configuration manager.
The current implementation of the IPS maintains a one-
to-one correspondence between ports and components. This
restriction may be relaxed in the future, allowing multiple
components that implement the same port to be used in the
same simulation, should the need arise.

The resource manager is responsible for discovering and
allocating the resources available to the framework. Currently
it only manages available compute nodes but may, in the
future, be extended to manage other resources like storage,
memory, I/O or bandwidth. In the current design, the resource
manager is used internally by the task manager. No resource
manager services are directly accessible by the individual
components.

The task manager mediates two types of activities initiated

by IPS components. The first activity is the inter-component
invocation of methods defined in the component’s API. Such
invocations can be blocking, where the caller suspends execu-
tion pending call completion. The task manager also supports
non-blocking calls, allowing methods from multiple compo-
nents to be concurrently active. It should be noted that, since
component objects themselves are not multithreaded, only one
method can be active at any given time for any one component.

The task manager also handles the execution of tasks. An
IPS task involves the execution of an underlying code on one
or more compute nodes. A component can launch one or more
tasks as part of the execution of its methods. The task man-
ager supports both blocking and non-blocking task execution,
allowing, for example, a component to orchestrate task-parallel
execution of underlying physics code. In launching tasks, the
task manager relies on the resource manager to manage the
pool of compute nodes available to the IPS simulation. More
information on the execution model of the IPS is presented
later, in section IV-F.

The data manager provides a platform independent in-
terface that enables the physics components to conveniently
manage their input and output data staging requirements. Lists
of input and output files for each component are specified in
the configuration file. The component input files comprise all
of the files needed for the component to perform its physics
task (except for data generated by other components in the
simulation). Similarly, component output files constitute a



subset of all files generated by the component, and which
may be used for component-specific analysis and debugging.
In addition to component specific data files, the data manager
mediates shared access to the plasma state files, caching
snapshots of the plasma state in a component’s work area upon
request, and managing the merger of updates from multiple
components into a shared master plasma state.

A recent addition to the IPS is an asynchronous event
service, based on CCA’s draft event service specification [13].
It provides access to event channels through a simple pub-
lish/subscribe event model. This service allows certain non-
essential functions of the simulation to be loosely coupled
to the simulation framework itself. Such functions include
the broadcast of simulation progress events to an external
web portal for monitoring. Another use case involves the
use of resource failure information to modify the pool of
resources managed by the resource manager. This later area is
currently being explored in collaboration with the Coordinated
Infrastructure for Fault Tolerant Systems (CIFTS) project [14],
using failure information published on the Fault Tolerance
Backplane (FTB) [15]. The event service is also being used
to synchronize execution of certain concurrent physics codes,
a feature currently being utilized in the SWIM slow MHD
campaign.

C. Plasma State

In the IPS, we refer broadly to the plasma state files as the
collection of files shared among the components that make up
a running simulation. These files function as both a repository
and the primary means of exchange for time evolving plasma
simulation data, shared among the IPS framework and physics
components. One special plasma state file is a netCDF file
that contains a core set of plasma state variables. This file can
also be accessed natively in Fortran, using a Fortran derived
type. Multiple, separately-named core state instances can be
declared and held in memory simultaneously. To keep the size
of the plasma state data structure and core file reasonable,
large (usually higher dimensional) items are typically stored
in separate files, and the file names are stored in the plasma
state.

By convention, each element of the Plasma State is owned
by one component which acts as the primary writer of that
element, and may be read by many. Early in the project, the
members of SWIM defined the appropriate inputs and outputs
for each class of component, which are now embodied in the
Plasma State variable definitions. It is the responsibility of
each component to adapt the data between the representations
defined by the Plasma State and what they use internally.

While file-based data exchange is adequate to the current
needs of the SWIM project, clearly it is not a universally
suitable approach to coupled simulation. In fact, in our ini-
tial planning and design, we anticipated a need to support
higher-performance in-memory (parallel) data exchange for
at least some components. Although this need has not yet
materialized, we anticipate addressing it with help from the
Common Component Architecture, which naturally supports

such high performance interactions. The CCA could either be
used selectively, essentially encapsulating the tightly-coupled
codes which the IPS might treat as a composite component,
or the whole of the IPS could be recast on top of a CCA
infrastructure instead of the current Python infrastructure.
The CCA’s Babel language interoperability tool [16], [17],
which supports Python (and Java) as well as traditional HPC
languages (C, C++, and Fortran), would allow much of the
current IPS’s simplicity and flexibility to be retained in either
approach.

D. IPS Components

As previously described, we have adopted the strategy of
using unmodified physics executables as the heart of the simu-
lation functionality of the IPS. Physics components, therefore,
are Python wrappers that provide the necessary adaptation
between the IPS component architecture and the underlying
executables and manage interactions with the framework. The
wrappers translate the component architecture’s method in-
vocations (generally init(), step(), and finalize())
into appropriate invocations of the underlying physics appli-
cation. Wrappers also orchestrate the transfer of data between
the plasma state and the application’s native data formats.
Component wrappers are generally quite straightforward and
follow a common template, though each differs in specific
details. They are intended to be written by the providers of
the underlying physics codes.

There are several special components in the IPS that do
not necessarily follow the Python-wrapped-application model.
The driver component is responsible for orchestrating the
overall simulation execution flow. The driver uses the task
manager to invoke publicly accessible methods defined on the
physics components that comprise the bulk of the simulation.
This invocation can be blocking, or non-blocking, based on
factors that include application logic, intra-component data
dependencies, resource utiliztion, among other factors. More
details on the IPS execution model can be found in section
IV-F. The driver component is distinguished in the IPS as
being the first component invoked in order to initiate a
simulation, but otherwise conforms to the same architecture as
other IPS components. In practice, IPS users write a different
driver component for each type of simulation they want to
perform. Drivers are usually written entirely in Python, which
makes them quite flexible and easily modified, though many
drivers will be quite generic and readily reusable.

The monitor component is another special component
which has proven useful to SWIM researchers. The function
of the monitor component is to extract key data of interest
from the plasma state and to make it available to an external
monitoring application which is used to check key diagnostics
of running or completed simulations. The monitor produces a
netCDF file containing time series of the variables of interest
(in contrast to the plasma state, which is just a single time
slice), which can be viewed with the ElVis visualization and
monitoring tool [18] or other standard netCDF tools.



E. Additional Services

The SWIM project includes a capability to monitor running
simulations using the SWIM web portal. The portal, based on
the Fusion Grid portal [19] collects and presents information
about the various simulation runs being carried out with
the IPS, tracking their progress and status. The connection
between the IPS and the portal is provided by a special IPS
component, called the portal bridge. From the framework’s
standpoint, the portal bridge is another component. However
this component is not part of a separate IPS simulation,
and is permanently attached to the framework. The portal
bridge subscribes to status and progress events published by
the framework as part of the invocation of various service
methods, and transmits them to the web portal through a
simple HTTP-based interface.

As previously mentioned, the IPS event service can also
be connected to the FTB event service through the FTB
bridge component. The FTB is intended to convey fault-
related information throughout an HPC system, and the goal
in coupling it to the IPS is to allow the IPS to take advantage
of information provided by the FTB to respond intelligently
to changing conditions within the system. For example, on
receiving an event on the FTB indicating that a particular node
is down, the FTB bridge would retransmit that event via the
IPS’s internal event service. The resource manager, on seeing
this event, would take the ailing node out of the resource
pool. If the node was idle, the IPS can continue and simply
exclude that node from future task launches until another event
is received indicating that it has been restored to service. If
the node was in use at the time of the failure, the task running
on it will fail, and the IPS can pursue appropriate recovery
mechanisms, such as restarting the task on a different set of
nodes.

F. Execution and Communication Model

The IPS is designed to operate in both Linux cluster and
high-end computing environments. An IPS simulation run is
submitted as a single batch job with an appropriate number of
compute nodes allocated to it. In order to accommodate the
constraints of high-end platforms, the IPS has been designed
so that all of the Python code (framework and component
wrappers) can execute on the system’s head node, while
the underlying physics executables are launched as parallel
tasks on the systems’ compute nodes using platform-specific
program execution environment (see Figure 2).

To simplify the development of component wrappers and
simulation drivers, we have adopted a process-based execution
model over a threaded one. In this approach, each component
instance (the Python wrapper portion) executes in a separate
process (a child of the framework process), and creates another
process for each back-end computational task it launches.
The task model is a two-level launch. A call occurs when
a method is invoked on a component and a task is launched
when a physics application is executed by a component. The
separation of these two actions allows the called component

and the framework to handle data movement, resource allo-
cation, failures and the computing environment without the
calling component being involved. This model also lends itself
to various modes of execution where multiple tasks in the
same or different components execute concurrently in separate
processes.

Interactions between the component and the framework
are handled through the services proxy present in each com-
ponent, which masks the distributed (multi-process) nature
of the IPS from the component implementation. From the
component’s perspective, framework services are invoked on
the services proxy and results returned. Internally, the ser-
vices proxy invokes remote procedure calls (RPC) on the
framework process through a set of communication queues,
shown in Figure 2, as different lines between component
and framework’s message handler. Messages from components
destined for the framework are sent along a shared queue (solid
line), to be processed by the single-threaded framework in a
FIFO manner. Responses from services travel along individual
queues (dashed line) to the components that request them.
A separate queue (dotted line) is used to submit component
method invocations to be processed by the component in
a FIFO manner as well. Results from component method
invocation are communicated back to the framework using the
same shared framework queue. This separation of the commu-
nication channels for invocation of framework services and
component method invocation simplifies the implementation
of the IPS considerably.

This design, along with the inclusion of non-blocking
method call and task launch capabilities in the task manager
enable the flexible utilization of the IPS’s MCMD capabili-
ties. Multiple component methods can be active concurrently,
provided the simulation logic and data dependencies allow
for such a scenario. Furthermore, a single component method
implementation can launch multiple concurrent instances of
the underlying physics application, collating their results into
the plasma state upon completion. These capabilities are cur-
rently being explored to restructure traditional serially coupled
simulations to improve over-all execution times.

V. APPLICATION TO ITER PLASMA DISCHARGES

The IPS is an essential tool that enables SWIM researchers
to explore interesting coupled physics. As is often the case,
introducing multi-physics coupling can reveal unexpected
physical and mathematical nuances which must be understood
and addressed. While this work is going on, the IPS is also
being used in several scientific studies, one of which we
highlight here.

The ITER experimental fusion reactor is an international
effort to build a new large fusion device, which is designed to
produce several hundred megawatts of fusion energy. Although
the ITER tokamak is still years from completion, integrated
modeling of anticipated ITER plasma discharges already plays
a very important role in the ITER program, both to help
finalize the design, and to plan the research program. Current
integrated modeling approaches used for ITER typically take



Fig. 3. Sample IPS results for an ITER simulation. Power sources include two neutral beams and ion cyclotron heating. In this case, the plasma heating is
dominated by fusion alpha particles.

1 to 1.5 months per run with moderate fidelity models. Many
such runs are required for surveys (parameter sweeps) and
optimization studies.

The SWIM project has adopted as a near-term goal of
demonstrating the ability to significantly accelerate such sim-
ulations through the use of massively parallel computers while
simultaneously improving the physical fidelity through the
use of better and higher resolution models. Figure 3 shows
representative results [20] from simulations which use the IPS
to integrate the TSC/GLF23 [21]–[23] transport model, the
AORSA full-wave ICRF code [24], and the NUBEAM neutral
beam code [25], [26], which had previously been studied with
the TSC/PTRANSP code [27]–[29] with serial version of the
heating and transport modules. The IPS-based simulations on
the Cray XT4 at the National Energy Research Supercomputer
Center (NERSC) used 2056 processors for AORSA and 512
processors for NUBEAM. The NUBEAM code used 106 par-
ticles for neutral beam injection and 106 for fusion products,
while the AORSA calculations used 256×256 Fourier modes
in the poloidal plane. These calculations are much higher

resolution than were previously feasible and were carried out
in six days rather than six weeks. By replacing AORSA with
the less computationally intensive TORIC code [30], we expect
to be able to get further significant reductions in the turn
around time for these simulations, while maintaining a much
higher fidelity than the original TSC/PTRANSP simulations.

VI. CONCLUSIONS AND FUTURE WORK

We have described the origins, design, and implementation
of the Integrated Plasma Simulator, a component framework
for loosely coupled fusion modeling. At present, nine differ-
ent components have been used within the IPS framework,
representing six different types of physics, and two more
applications are in the process of being componentized. The
IPS is being used in a variety of applications, including the
ITER discharge simulations described here.

Work is underway to take advantage of some of the newly-
added features of the framework, including support for the
MCMD-style of execution. A number of different MCMD sce-
narios were developed during the design of this capability, and
several are now in the process of being realized as simulations.



For the fast MHD campaign, the focus is on making better use
of computational resources, given the wide range of parallel
scalabilities of the various components. Simulations in this
campaign typically involve 1-2 scalable codes, which often
do not have direct data dependencies, and numerous mini-
mally scalable codes, including linear stability analysis codes
which can be externally parallelized over toroidal modes. The
MCMD capability will be used for the concurrent execution
of independent tasks in different phases of the simulation time
step.

For the slow MHD campaign, one of the first simula-
tions will involve computationally-intensive and long-running
NIMROD MHD code [31] and the GENRAY RF code [32]
which is minimally parallel and runs relatively quickly. As
the solution computed by NIMROD changes over time, it will
periodically need updates from GENRAY, which will be run
concurrently to avoid the need to stop and restart NIMROD.
This scenario will also make use of the event service to signal
when GENRAY updates are needed.

As has previously been mentioned, the event service, and
the IPS as a whole will serve as a research tool to explore
application-level fault resilience as part of the CIFTS project.
In this context, the flexibility of the IPS allows it to represent a
wide range of application characteristics. We are particularly
interested in issues faced by component-based applications,
and MCMD-style applications, though there are many research
opportunities in this area.

Finally, we should note that the IPS continues to undergo
development as new needs or opportunities arise. Examples
of possible areas of future work include developing explicit
(verifiable) “interfaces” for file-based data exchange, and
dataflow-based mechanisms to drive simulations.
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